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Abstract. We summarize William Arveson’s work on entangle-
ment in quantum information theory.

William Arveson [1934-2011] worked mostly in the area of operator
theory and operator algebras, but starting in 2008 turned to the area
of quantum information theory, and wrote several papers relating to
entanglement. The purpose of this article is to make better known to
the mathematical community his work in this area.

We will define entanglement mathematically below, but first give a
physical description. Entanglement is a property of physical systems
(at a small, “quantum” scale) and their subsystems. When two physical
systems interact, the physical state of the interacting systems contains
more information than the individual subsystems. Furthermore, this
feature (called entanglement) persists even if the subsystems become
separated by a large distance. In recent years, it has been realized
that entanglement has remarkable applications in quantum computing,
quantum cryptography, and quantum communication.

Now we briefly summarize the main results of Arveson’s papers
[2, 3, 4]. In the first paper, Arveson shows that the state of a physical
system is almost always entangled if it has low rank compared to its
rank on a subsystem. In the second paper, he shows that physical op-
erations (“quantum channels”) satisfy a dichotomy: they either always
destroy entanglement (“entanglement breaking”) or almost always pre-
serve entanglement. Furthermore, if the quantum channel has low rank,
it almost always preserves entanglement. The third paper concerns
states which are maximally entangled. There is a well-accepted defi-
nition of that term for the simplest physical systems (pure states on
bipartite systems), but not more generally. Arveson proposes a gen-
eral definition, and gives an explicit description of maximally entangled
states in many cases.
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Now we turn to a more detailed description of the papers. We be-
gin with mathematical terminology relevant to the first two papers.
The key physical notions are observables (quantities that can be mea-
sured), states (giving expectation values for observables), and quantum
channels (physical operations on states), and we now define the math-
ematical equivalents.

An observable is an Hermitian matrix in the space Mn of n × n
complex matrices. A state is a density matrix (a positive semidefinite
matrix d of trace 1), identified with the positive linear functional that
takes x ∈ Mn to tr(xd). For each unit vector ξ ∈ Cn, the vector state
ωξ is the functional ωξ(x) = 〈xξ, ξ〉, and the vector ξ, the associated
density matrix, and the vector state ωξ all are referred to as pure states.
(They are the extreme points of the convex set of states.)

Observables (and states) for two interacting physical systems are
represented by matrices in Mm⊗Mn, which can be identified as m×m
block matrices with entries in Mn, hence with matrices in Mmn. The
matrices for observables for one of the individual systems live in Mm⊗I
(identified with Mm), and for the other system live in I ⊗Mn

∼= Mn.
A physical operation should be a linear map Φ that takes states

to states, hence is a positive map and preserves trace. Furthermore,
if we have two interacting systems (say belonging to Alice and Bob),
and an operation Φ : Mn → Mp is carried out on Bob’s system, and
nothing is done to Alice’s system Mk, the operation on the combined
system is represented by I ⊗ Φ, and this should also take states to
states and hence be positive. Thus Φ should have the property that
Ik ⊗ Φ : Mk ⊗Mn → Mk ⊗Mp is a positive map for all k ≥ 1. This is
precisely the definition of a completely positive map. Hence as pointed
out by Kraus [7] a physical operation should be a completely positive
trace preserving map; such maps are called quantum channels.

(The notion of completely positive maps was due originally to Stine-
spring [12] in 1955, and didn’t attract much attention for quite a few
years. Then Arveson realized that Stinespring’s notion was exactly
what he needed in his study of multivariable operator theory and non-
self adjoint operator algebras. Arveson’s famous extension theorem for
completely positive maps was proven in [1] in 1969, and plays a cen-
tral role in that paper, and in operator theory and operator algebras
thereafter.)

A product state σ ⊗ τ represents a bipartite state where there is no
interaction between the two systems. A convex sum of such product
states represents a mixture of non-interacting systems, and is said to
be separable. A state is entangled if it is not separable. (A pure state



ARVESON’S WORK ON ENTANGLEMENT 3

ωξ is separable iff ξ is a product vector η ⊗ ν for some η ∈ Cm and
ν ∈ Cn, and is entangled for all other vectors ξ ∈ Cm ⊗ Cn.)

We now describe the paper “The probability of entanglement”. Arve-
son’s main result (assuming m ≥ n) states that if a state ρ on Mm⊗Mn

extends a state ω on Mn, and rank ρ ≤ (1/2) rankω, then ρ is almost
surely entangled. (Using different techniques and a different proba-
bility measure, this has been improved by Ruskai and Werner [10] to
rank ρ ≤ rankω.) Arveson also shows that the probability that an
extension of ω of maximal rank is entangled is strictly between 0 and
1.

As seen above, Arveson’s results show that the probability of entan-
glement of a state ρ depends on the rank of the state compared to the
rank of its restriction ω to Mn. He considers the set E(ω) of states
that restrict to ω. He filters those states by rank, with Er(ω) being the
states in E(ω) of rank ≤ r. He shows that almost every state in Er(ω)
has rank r. Thus in E(ω) almost all states have the maximum possible
rank m · rankω. Hence in determining the probability of entanglement
for states of rank r the relevant context is Er(ω), not E(ω).

Arveson’s central idea is to use the “noncommutative sphere” V r(n,m)
as a parameter space. This is the set of r-tuples v = (v1, . . . , vr) of com-
plex m× n matrices satisfying

(1) v∗1v1 + v∗2v2 + · · ·+ v∗rvr = 1n.

For each r this is a real-analytic manifold, with a natural transitive
action of a compact group. There is a unique invariant probability
measure on V r(n,m).

Arveson first parameterizes UCP maps. A UCP map Φ : Mm →Mn

is a completely positive map that is unital, i.e. Φ(Im) = In. UCP maps
are the dual maps of quantum channels with respect to the duality
given by the Hilbert-Schmidt inner product 〈A,B〉 = tr(B∗A). Thus
parameterizing UCP maps is equivalent to parameterizing quantum
channels.

For each v ∈ V r(n,m) he defines the UCP map Φv : Mm →Mn by

Φv(x) =
r∑

k=1

v∗kxvk.

Every UCP map Φ arises in this way for some r. The matrices vk can
be chosen to be linearly independent, and in that case r is unique and
is called the rank of Φ. The probability measure on V r(n,m) induces
a probability measure on the set of UCP maps of rank ≤ r.

Next he defines a map from UCP maps of rank ≤ r onto Er(ω). Let
ξ ∈ Cn⊗Cn be a unit vector such that the vector state ωξ on Mn⊗Mn
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extends ω. Define a state ρΦ on Mm ⊗Mn by

(2) ρΦ(a⊗ b) = 〈(Φ(a)⊗ b)ξ, ξ〉.

The map Φ 7→ ρΦ is a homeomorphism from the set of UCP maps of
rank ≤ r onto Er(ω). Composing this with the map v 7→ Φv gives a pa-
rameterization of Er(ω), and then the probability measure on V r(n,m)
induces a measure on Er(ω).

The map Φ 7→ ρΦ generalizes other well known correspondences of
completely positive maps and positive linear functionals, cf. [5, 6, 11,
13]. Perhaps the earliest use of such a correspondence was by Arveson
[1] in his work on extensions of completely positive maps.

Arveson’s main tools in proving his results are showing that partic-
ular sets of parameters are open (hence have positive measure), or are
a proper subvariety of V r(n,m) (hence have measure zero). Arveson
identifies parameters associated with separable or entangled states di-
rectly in terms of a condition on the parameters. He also defines a
“wedge invariant” on V r(n,m) which provides a new necessary condi-
tion for separability, quite different from previously known conditions.

Next we discuss Arveson’s paper “Quantum channels that preserve
separability”. Arveson calls a vector ξ ∈ Cn ⊗ Cn highly entangled if
ωξ restricted to Mn has rank n, or equivalently if ξ =

∑n
i=1 ηi ⊗ νi,

where η1, . . . ηn are nonzero and orthogonal, and ν1, . . . , νp are nonzero
and orthogonal. Arveson then says a UCP map Φ is entanglement
preserving if the adjoint map (Φ⊗ I)′ maps all highly entangled vector
states to entangled states.

On the other hand, in quantum information theory a UCP map Φ is
said to be entanglement breaking if the map (Φ⊗ I)′ takes all states to
separable states. Arveson proves the interesting dichotomy that every
UCP map is either entanglement preserving or entanglement breaking.

A UCP map Φ is entanglement preserving iff the corresponding state
ρΦ is entangled. This is used to carry over results in [2] on probability
of states being entangled to statements about the probability of UCP
maps being entanglement preserving. For example, Arveson shows that
UCP maps of rank ≤ n/2 are almost surely entanglement preserving,
but that this is not the case for rank mn.

The paper [3] finishes with some results on the likelihood of a UCP
map being extremal (i.e., an extreme point of the set of UCP maps).
Arveson shows that the set of extremal UCP maps of rank r is a rel-
atively open and dense set of full measure in all UCP maps of rank
r, and that there are no extremal UCP maps of rank > n. This uses
Choi’s characterization of extremal UCP maps [5].



ARVESON’S WORK ON ENTANGLEMENT 5

We turn now to Arveson’s third paper “Maximal vectors in Hilbert
space and quantum entanglement” [4]. In quantum information, entan-
glement is considered a resource, and some entangled states are viewed
as possessing more entanglement than others. However, there is no
agreed upon definition of the amount of entanglement other than for
bipartite vector states.

The context here is a Hilbert space H which is a tensor product
of Hilbert spaces H1, . . . , HN , so H = H1 ⊗ H2 ⊗ · · · ⊗ HN . Letting
nk = dimHk, we can arrange n1 ≤ n2 . . . ≤ nN , and Arveson allows
HN to be infinite dimensional. To cover both the cases where H is
finite or infinite dimensional, the role of matrix algebras Mn is played
by B(H), the bounded operators on H.

If N = 2 (the “bipartite” case), a unit vector is separable if it is a
product vector ξ = η1⊗η2, and otherwise is entangled. Various criteria
for measuring the amount of entanglement coincide in this case, and
there is general agreement that a unit vector is maximally entangled
precisely if it can be written in the form

(3)
1
√
n1

∑
i

ξi ⊗ ηi

where ξ1, · · · , ξn1 is an orthonormal basis of H1 and η1, · · · , ηn1 are
orthonormal in H2.

The situation is more complicated for pure states when N > 2, and
for general states. Arveson begins by defining a decomposable vector
to be one of the form ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξN where ξi ∈ Hi for 1 ≤ i ≤ N .
Let V be the set of decomposable unit vectors. Then he defines a
maximal vector to be one whose distance from V is maximal. He shows
that the maximal vectors are the same as the maximally entangled
vectors (those of the form (3)) in the bipartite case, and describes both
maximal vectors and maximally entangled states in many cases, as we
now discuss.

Arveson starts by working with an arbitrary set V of unit vectors
in a Hilbert space H. The set V is assumed to be closed under mul-
tiplication by scalars of modulus 1, and to have a span that is dense
in H. If V isn’t closed, one replaces V by its closure. Let K be the
closed convex hull of V . He defines the inner radius r(V ) to be the ra-
dius of the largest closed ball around the origin contained in K. When
r(V ) > 0, then K is the closed unit ball of a unique norm ‖ · ‖V on H.
The requirement r(V ) > 0 is automatic when H is finite dimensional,
and is assumed when dimH =∞.

Arveson shows the unit vectors where ‖·‖V achieves its minimum are
precisely the points in V , i.e., the decomposable vectors. The maximum
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on the unit sphere is achieved at points where ‖x‖V = 1/r(V ), and
he proves that these are the maximal vectors, i.e., the points at the
maximum distance (in the usual Hilbert norm) from V .

To gain some intuition about Arveson’s approach, consider a toy
example. Let H = R2, and let V consists of the four points where the
lines y = ±x meet the unit circle. The convex hull K of V is a square.
and the maximal vectors are the four points where the axes meet the
unit circle. These are the points ξ whose norm ‖x‖V is maximal and
equals 1/r(V ).

To define and determine maximal states, Arveson proceeds in sim-
ilar fashion, beginning with the functionals ωξ,η defined by ωξ,η(A) =
〈Aξ, η〉 for ξ, η ∈ V . (For simplicity in our description of the norm,
we assume dimH < ∞.) The closed convex hull B of V is the closed
unit ball of a norm E. The states on which E achieves its minimum
value 1 are the convex combinations of vector states ωξ for ξ ∈ V : a
generalization of separable states. Arveson calls E(ρ) the generalized
entanglement of ρ, and a state is defined to be maximally entangled if
E achieves its maximum value r(V )−2 at ρ.

Next these abstract results are applied to the concrete case of inter-
est. Arveson identifies the norms ‖ · ‖V on H = H1⊗ · · ·⊗HN and the
norm E on B(H) = B(H1)⊗ · · · ⊗ B(HN) as the projective norms on
the tensor products (i.e., the greatest cross norms). (The norm E was
used in the bipartite (N = 2) case by Rudolph [9] to identify separable
states as those with projective norm 1, so Arveson’s results both pro-
vide a motivation for the role of the projective norm, and generalize
Rudolph’s separability criterion to cases where N > 2.)

Arveson is able to compute r(V ) and hence describe the maximal
vectors explicitly with an assumption on the dimensions of the Hilbert
spaces. The requirement is

(4) dim(H1 ⊗H2 ⊗ · · · ⊗HN−1) ≤ dimHN .

He shows that maximal vectors are the vectors whose restriction to
B(H1⊗· · ·⊗HN−1)) is the tracial state. In the finite dimensional case,
vectors with such restrictions exist iff (4) holds. Assuming (4), he
also proves the surprising result that maximal vectors are the vectors
that are maximal with respect to the bipartite factorization (H1 ⊗
· · · ⊗ HN−1) ⊗ HN , and hence have the explicit description (3) with
ξi ∈ H1 ⊗ · · · ⊗ HN−1 and ηi ∈ HN . (This also shows that Arveson’s
notion of maximal vectors coincides with the usual notion of maximally
entangled vectors when N = 2.)

Since his measure of entanglement is a norm, Arveson is able to show
that if a maximally entangled state is a convex combination of other
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states, each of the latter must also be maximally entangled, and in
particular every maximally entangled state is a convex combination of
maximally entangled vector states. It also follows that every vector in
the range of a maximally entangled state is maximally entangled. Thus
the subspaces occurring in this way have the remarkable property that
all of their vectors are maximally entangled. It is not apparent that
such subspaces of dim > 1 even exist, but Parasarathy [8] has given
examples, which he calls perfectly entangled subspaces.

One strength of Arveson’s paper is that the results hold for many
infinite dimensional Hilbert spaces. On the other hand, cases like C2⊗
C2 ⊗ C2 don’t satisfy the dimension requirement (4), so as Arveson
points out, there is research remaining to be done.

I’ll finish this summary with a few personal impressions of Arveson.
If I was forced to pick a single adjective, it would be “imaginative”. In
many of the talks I heard him give, he introduced fascinating new con-
cepts, or approached current problems from a surprising direction. In
addition to his creativity and technical power, he was a great expositor
and speaker. His work on entanglement illustrates all of this.

Finally, I would like to thank Erik Alfsen for many helpful comments
on this essay.
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